Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.049
Filtrar
1.
J Neurol Sci ; 459: 122955, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593523

RESUMO

Chikungunya fever is an arboviral illness caused by chikungunya virus (CHIKV) and transmitted by the bite of Aedes aegypti and Aedes albopictus. It is an RNA virus belonging to the genus Alphavirus and family Togaviridae. We present a case series of three patients with chikungunya illness developing para/post-infectious myeloradiculoneuropathy.These patients developed neurological symptoms in the form of bilateral lower limb weakness with sensory and bowel involvement after the recovery from the initial acute episode of chikungunya fever. Clinical examination findings suggested myeloradiculoneuropathy with normal Magnetic Resonance Imaging of the Spine, with the nerve conduction study showing sensorimotor axonal polyneuropathy. All the patients were treated with 1 g of methylprednisolone once a day for five days, and case 2 was given intravenous immunoglobulin also. In the follow-up, cases 1 and 2 showed complete recovery without recurrence, and case 3 did not show improvement at one month.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico por imagem , Febre de Chikungunya/tratamento farmacológico , Insetos Vetores , Vírus Chikungunya/genética
2.
CRISPR J ; 7(2): 88-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564197

RESUMO

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Assuntos
Doença de Chagas , Rhodnius , Animais , Feminino , Edição de Genes/métodos , Rhodnius/genética , Rhodnius/parasitologia , Sistemas CRISPR-Cas , Insetos Vetores/parasitologia , Doença de Chagas/genética , Doença de Chagas/parasitologia
3.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630610

RESUMO

Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.


Assuntos
Ceratopogonidae , Erwinia , Humanos , Animais , Genômica , Insetos Vetores , Ecossistema
4.
Genes (Basel) ; 15(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540382

RESUMO

The emergence of culicoid-transmitted bluetongue and Schmallenberg viruses in several European countries demonstrated the ability of indigenous biting midge species to transmit pathogens. Entomologic research programs identified members of the Obsoletus Group (Culicoides subgenus Avaritia) as keyplayers in disease epidemiology in Europe. However, morphological identification of potential vectors is challenging due to the recent discovery of new genetic variants (haplotypes) of C. obsoletus sensu stricto (s.s.), forming distinct clades. In this study, 4422 GenBank entries of the mitochondrial cytochrome c oxidase subunit I (COI) gene of subgenus Avaritia members of the genus Culicoides were analyzed to develop a conventional multiplex PCR, capable of detecting all vector species and clades of the Western Palearctic in this subgenus. Numerous GenBank entries incorrectly assigned to a species were identified, analyzed and reassigned. The results suggest that the three C. obsoletus clades represent independent species, whereas C. montanus should rather be regarded as a genetic variant of C. obsoletus s.s. Based on these findings, specific primers were designed and validated with DNA material from field-caught biting midges which achieved very high diagnostic sensitivity (100%) when compared to an established reference PCR (82.6%).


Assuntos
Ceratopogonidae , Animais , Ceratopogonidae/genética , Reação em Cadeia da Polimerase Multiplex , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Insetos Vetores/genética
5.
Sci Total Environ ; 925: 171664, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508278

RESUMO

Grapevine leafroll-associated virus 3 (GLRaV-3) is the most prevalent and economically damaging virus in grapevines and is found on nearly all continents, except Antarctica. Ten mealybugs act as vector insects transmitting the GLRaV-3. Understanding the potential distribution range of vector insects under climate change is crucial for preventing and managing vector insects and controlling and delaying the spread of GLRaV-3. This study investigated the potential geographical range of insect vectors of GLRaV-3 worldwide using MaxEnt (maximum entropy) based on occurrence data under environmental variables. The potential distributions of these insects were projected for the 2030s, 2050s, 2070s, and 2090s under the three climate change scenarios. The results showed that the potential distribution range of most vector insects is concentrated in Southeastern North America, Europe, Asia, and Southeast Australia. Most vector insects contract their potential distribution ranges under climate-change conditions. The stacked model suggested that potential distribution hotspots of vector insects were present in Southeastern North America, Europe, Southeast Asia, and Southeast Australia. The potential distribution range of hotspots would shrink with climate change. These results provide important information for governmental decision-makers and farmers in developing control and management strategies against vector insects of GLRaV-3. They can also serve as references for studies on other insect vectors.


Assuntos
Closteroviridae , Vitis , Animais , Doenças das Plantas , Insetos , Insetos Vetores
6.
Parasit Vectors ; 17(1): 123, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475862

RESUMO

BACKGROUND: Culicoides, also known as biting midges, carry pathogens which include Mansonella perstans. Mansonella perstans is a nematode parasite implicated in a number of disease outcomes. Even though a high prevalence of about 75% M. perstans infection has been recorded in some communities in the middle belt of Ghana, and a wide diversity of Culicoides species has been identified, the exact Culicoides species transmitting M. perstans in Ghana has not yet been deciphered. This study therefore aimed at assessing the species diversity of Culicoides and their role in the transmission of M. perstans in the middle belt of Ghana. METHODS: Culicoides species were sampled from 11 communities in the Asante-Akim North and Sene West districts in the middle belt of Ghana. Centre for Disease Control (CDC) UV light traps, as well as human bait (i.e. human landing catch and engorged catch) methods were used to assess the species abundance and diversity of Culicoides in the study communities in the wet and dry season. A colorimetric Loop-Mediated Isothermal Amplification (LAMP) assay was performed to assess the vector competence of the various Culicoides species. RESULTS: A total of 4810 Culicoides from 6 species were sampled. These included Culicoides inornatipennis, C. milnei, C. schultzei, C. grahamii, C. neavei, and C. imicola. Culicoides imicola was the most abundant species (56%) followed by C. grahamii (16%). Light traps sampled the most diverse species (6 species). Human landing catch and engorged catch methods identified three anthropophilic species, C. grahamii, C. milnei, and C. inornatipennis, with C. grahamii being the most anthropophilic with a peak biting time between the hours of 5 p.m. to 6 p.m. Generally, there was relatively higher species abundance in the wet than dry season. LAMP assay identified C. grahamii as the potential vector for M. perstans transmission in the middle belt of Ghana. CONCLUSIONS: For the first time, we have demonstrated that C. grahamii is the potential competent vector for M. perstans transmission in the middle belt of Ghana. It is more abundant in the rainy season and has a peak biting time between the hours of 5 and 6 p.m.


Assuntos
Ceratopogonidae , Mansonella , Humanos , Animais , Ceratopogonidae/parasitologia , Gana , Insetos Vetores , Prevalência
7.
Parasit Vectors ; 17(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500121

RESUMO

BACKGROUND: Triatoma garciabesi, a potential vector of the parasitic protozoan Trypanosoma cruzi, which is the causative agent of Chagas disease, is common in peridomestic and wild environments and found throughout northwestern and central Argentina, western Paraguay and the Bolivian Chaco. Genetic differentiation of a species across its range can help to understand dispersal patterns and connectivity between habitats. Dispersal by flight is considered to be the main active dispersal strategy used by triatomines. In particular, the morphological structure of the hemelytra is associated with their function. The aim of this study was to understand how genetic diversity is structured, how morphological variation of dispersal-related traits varies with genetic diversity and how the morphological characteristics of dispersal-related traits may explain the current distribution of genetic lineages in this species. METHODS: Males from 24 populations of T. garciabesi across its distribution range were examined. The cytochrome c oxidase I gene (coI) was used for genetic diversity analyses. A geometric morphometric method based on landmarks was used for morpho-functional analysis of the hemelytra. Centroid size (CS) and shape of the forewing, and contour of both parts of the forewing, the head and the pronotum were characterised. Length and area of the forewing were measured to estimate the aspect ratio. RESULTS: The morphometric and phylogenetic analysis identified two distinct lineages, namely the Eastern and Western lineages, which coincide with different ecological regions. The Eastern lineage is found exclusively in the eastern region of Argentina (Chaco and Formosa provinces), whereas the Western lineage is prevalent in the rest of the geographical range of the species. CS, shape and aspect ratio of the hemelytra differed between lineages. The stiff portion of the forewing was more developed in the Eastern lineage. The shape of both portions of the hemelytra were significantly different between lineages, and the shape of the head and pronotum differed between lineages. CONCLUSIONS: The results provide preliminary insights into the evolution and diversification of T. garciabesi. Variation in the forewing, pronotum and head is congruent with genetic divergence. Consistent with genetic divergence, morphometry variation was clustered according to lineages, with congruent variation in the size and shape of the forewing, pronotum and head.


Assuntos
Doença de Chagas , Triatoma , Masculino , Animais , Filogenia , Insetos Vetores , Variação Genética
8.
Arch Insect Biochem Physiol ; 115(3): e22102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500452

RESUMO

The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.


Assuntos
Tisanópteros , Tospovirus , Animais , Insetos Vetores/genética , Insetos , Filogenia , Tisanópteros/genética , Tospovirus/genética
9.
Sci Data ; 11(1): 312, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531927

RESUMO

The Japanese sawyer beetle, Monochamus alternatus, is not only one of the most important wood boring pest itself, but also a major vector of the invasive pinewood nematode (PWN), which is the causal agent of the devastative pine wilt disease (PWD) and threats the global pine forest. Here, we present a near-complete genome of M. alternatus at the chromosome level. The assembled genome was 792.05 Mb with contig N50 length of 55.99 Mb, which is the largest N50 size among the sequenced Coleoptera insects currently. 99.57% of sequence was anchored onto ten pseudochromosomes (one X-chromosome and nine autosomes), and the final genome harbored only 13 gaps. BUSCO evaluation revealed the presence of 99.0% of complete core genes. Thus, our genome assembly represented the highest-contiguity genome assembly as well as high completeness in insects so far. We identified 20,471 protein-coding genes, of which 20,070 (98.04%) were functionally annotated. The genome assembly of M. alternatus provides a valuable resource for exploring the evolution of the symbiosis between PWN and the vector insects.


Assuntos
Besouros , Genoma de Inseto , Nematoides , Pinus , Animais , Besouros/genética , Besouros/parasitologia , Pinus/parasitologia , Madeira , Insetos Vetores/genética , Insetos Vetores/parasitologia
10.
Acta Trop ; 253: 107169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432403

RESUMO

Triatoma dimidiata is a vector of the hemoparasite Trypanosoma cruzi, the causal agent of Chagas disease. It settles reproductive colonies in the peridomicile of the premises. The peridomicile is comprised of a random set of artificial and natural features that overlap and assemble a network of microenvironmental suitable sites (patches) that interact with each other and favor the structure and proliferation of T. dimidiata colonies. The heterogeneity of patch characteristics hinders the understanding and identification of sites susceptible to colonization. In this study, a classification system using a random forest algorithm was used to identify peridomiciles susceptible to colonization to describe the spatial distribution of these sites and their relationship with the colonies of T. dimidiata in ten localities of Yucatan. From 1,000 peridomiciles reviewed, the classification showed that 13.9 % (139) of the patches were highly susceptible (HSP), and 86.1 % (861) were less susceptible (LSP). All localities had at least one HSP. The occupancy by patch type showed that the percentage of total occupancy and by colonies was higher in the HSP, while the occupancy by adult T. dimidiata without evidence of nymphs or exuviae (propagules) was higher in the LSP. A generalized additive model (GAM) revealed that the percentage of occupied patches increases as the abundance of individuals in the localities increases however, the percentage of occupied patches in LSP is lower than occupied in HSP. Distance analyses revealed that colonies and propagules were located significantly closer (approximately 200 m) to a colony in a HSP than any colony in a LSP. The distribution of T. dimidiata in the localities was defined by the distribution of patch type; as the occupancy in these patches increased, a network of peridomestic populations was configured, which may be promoted by a greater abundance of insects inside the localities. These results reveal that the spatial distribution of T. dimidiata individuals and colonies in the peridomicile at the locality scale corresponds to a metapopulation pattern within the localities through a system of patches mediated by distance and level of the vectors' occupancy.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Humanos , Animais , Triatoma/parasitologia , Insetos Vetores/parasitologia , Ninfa
11.
Vet Parasitol Reg Stud Reports ; 49: 100996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462301

RESUMO

A repeated cross-sectional entomological survey was conducted to estimate Glossina (tsetse) and other biting flies density, their seasonal variation and associated risk factors in intervention and non- intervention areas of South Omo Zone, Southwest Ethiopia from January 2019-November 2019. In both dry and wet seasons, a total of 96 NGU traps (64 traps in tsetse intervention districts and 32 traps in tsetse non- intervention districts) were deployed at an interval of about 100-200 m in purposively selected and suspected tsetse habitats. Thus, Glossina pallidipes was found to be the only cyclical vector along with mechanical vectors of Tabanus, Stomoxys and Haematopota. In tsetse intervention areas, G. pallidipes apparent density of 2.64 F/T/D and 0.42 F/T/D was recorded in dry and wet season respectively. Mechanical vectors (dry; wet) of Tabanus (205; 155), Stomoxys (34; 54) and Haematopota (50; 33) were also recorded in tsetse intervened areas. Whereas, in non- intervention areas, apparent density of G. pallidipes was 2.03 F/T/D and 0.56 F/T/D, respectively in dry and wet season. Similarly, Tabanus (22; 56), Stomoxys (10; 8) and Haematopota (5; 7) respectively in dry and wet (dry; wet) season were recorded in tsetse non- intervention areas. According to Negative Binomial Regression (NBR), season was the only variable significantly affecting (P < 0.05) the Glossina count in the current study area. Accordingly, the incidence G. pallidipes during wet season was decreased by the factor of 0.21 (CI; 0.097-0.47) when compared to its incidence in dry season by holding other variables constant. In conclusion, cyclical vectors were playing vital role in transmission of trypanosomosis in South Omo Zone along with numerous mechanical vectors even though there have been vector intervention activities in the areas. Therefore, strong, sustainable, environmentally friend and community participating vector control strategies should be followed to tackle the vector distribution in the area.


Assuntos
Doenças dos Bovinos , Mordeduras e Picadas de Insetos , Muscidae , Tripanossomíase Bovina , Moscas Tsé-Tsé , Bovinos , Animais , Etiópia/epidemiologia , Estudos Transversais , Tripanossomíase Bovina/epidemiologia , Insetos Vetores , Prevalência , Mordeduras e Picadas de Insetos/veterinária
12.
Res Vet Sci ; 171: 105227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513458

RESUMO

African animal trypanosomosis is a parasitic disease that causes significant economic losses in livestock due to anaemia, loss of condition, emaciation, and mortality. It is a key impediment to increased cattle output and productivity in Ethiopia. Cross-sectional entomological and parasitological studies were performed in the Gambella Region state of southwestern Ethiopia to estimate the prevalence of bovine trypanosomosis, apparent fly density, and potential risk factors. Blood samples were taken from 546 cattle for the parasitological study and analyzed using the buffy coat technique and stained with Giemsa. A total of 189 biconical (89) and NGU (100) traps were deployed in the specified districts for the entomological survey. The overall prevalence of trypanosomosis at the animal level was 5.5% (95% CI: 3.86-7.75). Trypanosoma vivax (50.0%), T. congolense (30.0%), T. brucei (20.0%), and no mixed trypanosome species were found. The prevalence of trypanosomosis was significantly (p < 0.05) affected by altitude, body score conditions, age, mean packed cell volume (PCV), and peasant associations, while sex and coat color had no significant effect. According to the entomological survey results, a total of 2303 flies were captured and identified as tsetse (Glossina pallidipes (5.3%)) and G. fuscipes fuscipes (3.3%) and other biting flies (Tabanus (60.1%) and Stomoxys (31.3%)). In the current study, the overall apparent density was 4.1 flies/trap/day. This study shows that trypanosomosis remains a significant cattle disease in the Gambella regional state even during the dry season. Thus, the findings support the necessity to improve vector and parasite control measures in the area.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase Bovina , Tripanossomíase , Moscas Tsé-Tsé , Bovinos , Animais , Estudos Transversais , Etiópia/epidemiologia , Moscas Tsé-Tsé/parasitologia , Insetos Vetores , Tripanossomíase Bovina/epidemiologia , Tripanossomíase Bovina/parasitologia , Tripanossomíase/veterinária , Prevalência , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Doenças dos Bovinos/epidemiologia
13.
Parasitol Res ; 123(3): 170, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526739

RESUMO

In Uzbekistan, the number of reported leishmaniasis cases is rising at the alarming rate. In this work, we studied the phlebotomine sand fly (Diptera: Phlebotominae) diversity in the foci of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan and compared it with the data obtained for the same area 50 years ago, when infection prevalence was reportedly low. We found that the implicated vector for zoonotic leishmaniasis, P. papatasi, remained eudominant; the proportion of implicated anthroponotic leishmaniasis vector, P. sergenti, rose significantly from averaged 5.4 to 41.4%; Phlebotomus alexandri, a suspected visceral leishmaniasis vector, was eudominant at two sites, and a second suspected vector for this disease, P. longiductus, was newly recorded in the region. We conclude that the increase in the documented cases of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan may be connected to the changes in fauna of sand flies vectoring Leishmania spp.


Assuntos
Leishmaniose Cutânea , Leishmaniose Visceral , Phlebotomus , Psychodidae , Animais , Uzbequistão/epidemiologia , Insetos Vetores , Leishmaniose Cutânea/epidemiologia , Leishmaniose Visceral/epidemiologia
14.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536757

RESUMO

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Assuntos
Arbovírus , Hemípteros , Oryza , Tenuivirus , Animais , Arbovírus/genética , Hemípteros/fisiologia , Tenuivirus/fisiologia , Insetos Vetores , Antivirais/metabolismo , Oryza/genética , Doenças das Plantas
15.
Viruses ; 16(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400068

RESUMO

Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease Virus (EHDV) are Orbiviruses primarily transmitted by their biological vector, Culicoides spp. Latreille, 1809 (Diptera: Ceratopogonidae). These viruses can infect a diverse range of vertebrate hosts, leading to disease outbreaks in domestic and wild ruminants worldwide. This study, conducted at the Belo Horizonte Municipal Parks and Zoobotany Foundation (FPMZB-BH), Minas Gerais, Brazil, focused on Orbivirus and its vectors. Collections of Culicoides spp. were carried out at the FPMZB-BH from 9 December 2021 to 18 November 2022. A higher prevalence of these insects was observed during the summer months, especially in February. Factors such as elevated temperatures, high humidity, fecal accumulation, and proximity to large animals, like camels and elephants, were associated with increased Culicoides capture. Among the identified Culicoides spp. species, Culicoides insignis Lutz, 1913, constituted 75%, and Culicoides pusillus Lutz, 1913, 6% of the collected midges, both described as competent vectors for Orbivirus transmission. Additionally, a previously unreported species in Minas Gerais, Culicoides debilipalpis Lutz, 1913, was identified, also suspected of being a transmitter of these Orbiviruses. The feeding preferences of some Culicoides species were analyzed, revealing that C. insignis feeds on deer, Red deer (Cervus elaphus) and European fallow deer (Dama dama). Different Culicoides spp. were also identified feeding on humans, raising concerns about the potential transmission of arboviruses at the site. In parallel, 72 serum samples from 14 susceptible species, including various Cervids, collected between 2012 and 2022 from the FPMZB-BH serum bank, underwent Agar Gel Immunodiffusion (AGID) testing for BTV and EHDV. The results showed 75% seropositivity for BTV and 19% for EHDV. Post-testing analysis revealed variations in antibody presence against BTV in a tapir and a fallow deer and against EHDV in a gemsbok across different years. These studies confirm the presence of BTV and EHDV vectors, along with potential virus circulation in the zoo. Consequently, implementing control measures is essential to prevent susceptible species from becoming infected and developing clinical diseases.


Assuntos
Antílopes , Vírus Bluetongue , Ceratopogonidae , Cervos , Vírus da Doença Hemorrágica Epizoótica , Orbivirus , Humanos , Animais , Vírus Bluetongue/genética , Brasil/epidemiologia , Insetos Vetores , Orbivirus/genética
16.
Viruses ; 16(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400075

RESUMO

Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant-insect-plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. From an environmentally friendly, sustainable, and efficient point of view, in this study, we explored the function of d-limonene in reducing the acquisition and transmission of TYLCV by B. tabaci as a repellent volatile. D-limonene increased the duration of non-feeding waves and reduced the duration of phloem feeding in non-viruliferous and viruliferous whiteflies by the Electrical Penetration Graph technique (EPG). Additionally, after treatment with d-limonene, the acquisition and transmission rate of TYLCV was reduced. Furthermore, BtabOBP3 was determined as the molecular target for recognizing d-limonene by real-time quantitative PCR (RT-qPCR), fluorescence competitive binding assays, and molecular docking. These results confirmed that d-limonene is an important functional volatile which showed a potential contribution against viral infections with potential implications for developing effective TYLCV control strategies.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Limoneno , Simulação de Acoplamento Molecular , Insetos Vetores , Doenças das Plantas/prevenção & controle , Comportamento Alimentar
17.
PLoS Negl Trop Dis ; 18(2): e0011937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306403

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi transmitted by blood-sucking insects of the subfamily Triatominae, is a major neglected tropical disease affecting 6 to 7 million of people worldwide. Rhodnius prolixus, one of the most important vectors of Chagas disease in Latin America, is known to be highly sensitive to environmental factors, including temperature. This study aimed to investigate the effects of different temperatures on R. prolixus development and life-cycle, its relationship with T. cruzi, and to gather information about the nutritional habits and energy consumption of R. prolixus. We exposed uninfected and infected R. prolixus to four different temperatures ranging from 24°C to 30°C, and monitored their survival, developmental rate, body and blood meal masses, urine production, and the temporal dynamics of parasite concentration in the excreted urine of the triatomines over the course of their development. Our results demonstrate that temperature significantly impacts R. prolixus development, life-cycle and their relationship with T. cruzi, as R. prolixus exposed to higher temperatures had a shorter developmental time and a higher mortality rate compared to those exposed to lower temperatures, as well as a lower ability to retain weight between blood meals. Infection also decreased the capacity of the triatomines to retain weight gained by blood-feeding to the next developmental stage, and this effect was proportional to parasite concentration in excreted urine. We also showed that T. cruzi multiplication varied depending on temperature, with the lowest temperature having the lowest parasite load. Our findings provide important insights into the potential impact of climate change on the epidemiology of Chagas disease, and can contribute to efforts to model the future distribution of this disease. Our study also raises new questions, highlighting the need for further research in order to understand the complex interactions between temperature, vector biology, and parasite transmission.


Assuntos
Doença de Chagas , Rhodnius , Trypanosoma cruzi , Humanos , Animais , Rhodnius/parasitologia , Temperatura , Insetos Vetores/parasitologia , Doença de Chagas/parasitologia , Estágios do Ciclo de Vida , Carga Parasitária
18.
Mem Inst Oswaldo Cruz ; 119: e230181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324880

RESUMO

BACKGROUND: In Brazil, transmission of visceral and cutaneous leishmaniasis has expanded geographically over the last decades, with both clinical forms occurring simultaneously in the same area. OBJECTIVES: This study characterised the clinical, spatial, and temporal distribution, and performed entomological surveillance and natural infection analysis of a leishmaniasis-endemic area. METHODS: In order to characterise the risk of leishmaniasis transmission in Altos, Piauí, we described the clinical and socio-demographic variables and the spatial and temporal distribution of cases of American visceral leishmaniasis (AVL) and American cutaneous leishmaniasis (ACL) cases and identified potential phlebotomine vectors. FINDINGS: The urban area concentrated almost 54% of ACL and 86.8% of AVL cases. The temporal and spatial distribution of AVL and ACL cases in Altos show a reduction in the number of risk areas, but the presence of permanent disease transmission foci is observed especially in the urban area. 3,808 phlebotomine specimens were captured, with Lutzomyia longipalpis as the most frequent species (98.45%). Of the 35 females assessed for natural infection, one specimen of Lu. longipalpis tested positive for the presence of Leishmania infantum and Leishmania braziliensis DNA. MAIN CONCLUSION: Our results indicate the presence of risk areas for ACL and AVL in the municipality of Altos and highlight the importance of entomological surveillance to further understand a possible role of Lu. longipalpis in ACL transmission.


Assuntos
Leishmania infantum , Leishmaniose Cutânea , Leishmaniose Visceral , Animais , Feminino , Brasil/epidemiologia , Insetos Vetores/genética , Leishmaniose Cutânea/epidemiologia , Leishmaniose Visceral/epidemiologia , Leishmania infantum/genética , DNA
19.
J Med Entomol ; 61(2): 465-472, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38297491

RESUMO

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are arthropod-borne viruses that are transmitted by biting midges in the genus Culicoides (Diptera: Ceratopogonidae) and can cause hemorrhagic disease in certain ruminants. The objectives of this study were to measure the incidence of BTV and EHDV infections in captive white-tailed deer herd as well as tissues and corresponding presence of Culicoides midges at a location near Clinton, LA. During a 7-yr study with yearly outbreaks of hemorrhagic disease in the deer herd, 15 species of Culicoides were captured using Centers for Disease Control (CDC) black light traps. Reverse transcriptase quantitative polymerase chain reaction (PCR) was performed to screen for BTV and EHDV in pools of midges and tissues of deer. From 2012 to 2018, 1,711 pools of midges representing 24,859 specimens were tested, and specimens from 5 of the 15 collected species (Culicoides debilipalpis, Culicoides stellifer, Culicoides venustus, Culicoides haematopotus, and Culicoides crepuscularis) were found to be PCR positive for BTV and EHDV. Most of the BTV-positive pools of biting midges were from specimens of C. debilipalpis and C. stellifer, and most of the EHDV-positive pools were from specimens of C. venustus and C. stellifer. During the 7-yr period, 112 white-tailed deer that died at the study location were PCR positive for BTV or EHDV: detected BTV serotypes were 10 and 12 and EHDV serotypes were 1, 2, and 6. There was a significant increase in BTV/EHDV antibody prevalence in white-tailed deer during the study; antibody-positive rates increased from 15% to 78% in the deer herd of approximately 100 animals.


Assuntos
Vírus Bluetongue , Bluetongue , Ceratopogonidae , Cervos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Doenças dos Ovinos , Viroses , Animais , Ovinos , Estudos Prospectivos , Incidência , Insetos Vetores , Ruminantes
20.
Sci Data ; 11(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351308

RESUMO

The Japanese sawyer beetle Monochamus alternatus (Coleoptera: Cerambycidae) is a pest in pine forests and acts as a vector for the pine wood nematode Bursaphelenchus xylophilus, which causes the pine wilt disease. We assembled a high-quality genome of M. alternatus at the chromosomal level using Illumina, Nanopore, and Hi-C sequencing technologies. The assembled genome is 767.12 Mb, with a scaffold N50 of 82.0 Mb. All contigs were assembled into ten pseudo-chromosomes. The genome contains 63.95% repeat sequences. We identify 16, 284 protein-coding genes in the genome, of which 11,244 were functionally annotated. The high-quality genome of M. alternatus provides an invaluable resource for the biological, ecological, and genetic study of this beetle and opens new avenues for understanding the transmission of pine wood nematode by insect vectors.


Assuntos
Besouros , Genoma de Inseto , Pinus , Animais , Besouros/genética , Florestas , Insetos Vetores , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...